2017 wholesale price TU-1J90 thermal wax actuator for industrial thermostatic water regulations mixing valve Export to Albania

2017 wholesale price 
 TU-1J90 thermal wax actuator for industrial thermostatic water regulations mixing valve Export to Albania

Short Description:

Product Detail

Product Tags

We can constantly satisfy our respected customers with our good high quality, good price tag and good support due to we have been additional specialist and extra hard-working and do it in cost-effective way for Gas Smoker Automatic Temperature Control , Valve Core Wax-Filled Sensor Thermal Electric Actuator For Radiator Valves , Radiator Valve Function , All products are manufactured with advanced equipment and strict QC procedures in order to ensure high quality. Welcome customers new and old to contact us for business cooperation.
2017 wholesale price TU-1J90 thermal wax actuator for industrial thermostatic water regulations mixing valve Export to Albania Detail:

1. Operation Principle

The Thermostatic Wax that has been sealed in shell body induces expansion by a given temperature, and inner rubber seal part drives its handspike to move under expansion pressure to realize a transition from thermal energy into mechanical energy. The Thermostatic Wax brings an upward movement to its handspike, and automatic control of various function are realized by use of upward movement of handspike. The return of handspike is accomplished by negative load in a given returned temperature.

2. Characteristic

(1)Small body size, occupied limited space, and its size and structure may be designed in according to the location where needs to work.

(2)Temperature control is reliable and nicety

(3)No shaking and tranquilization in working condition.

(4)The element doesn’t need special maintenance.

(5)Working life is long.

3.Main Technical Parameters

(1)Handspike’s height may be confirmed by drawing and technical parameters

(2)Handspike movement is relatives to the temperature range of the element, and the effective distance range is from 1.5mm to 20 mm.

(3)Temperature control range of thermal wax actuator is between –20 ~ 230℃.

(4)Lag phenomenon is generally 1 ~ 2℃. Friction of each component part and lag of the component part temperature cause a lag phenomenon. Because there is a difference between up and down curve of traveling distance.

(5)Loading force of thermal wax actuator is difference, it depends on its’ shell size.

Product detail pictures:

2017 wholesale price 
 TU-1J90 thermal wax actuator for industrial thermostatic water regulations mixing valve Export to Albania detail pictures

We're going to commit ourselves to giving our esteemed buyers using the most enthusiastically considerate solutions for 2017 wholesale price TU-1J90 thermal wax actuator for industrial thermostatic water regulations mixing valve Export to Albania, The product will supply to all over the world, such as: Israel , Rwanda , Somalia , Many products fully conform to the most rigorous of international guidelines and with our first-rate delivery service you will have them delivered at any time and in any place. And because Kayo deals in the entire spectrum of protective equipment, our customers don't need to waste time shopping around.

  • Vidéo 4/4 sur la simulation numérique d’un écoulement électroosmotique en milieu poreux.

    J’espère que ça vous aidera, et désolé pour la qualité de la vidéo et des explications, j’ai dû faire vite. Bon visionnage et bon courage pour votre travail !

    Liens des tutoriaux pour Blender:

    Code pour l’UDF dans Fluent:

    #include “udf.h”
    #include “models.h”



    real z = 1;
    real F = 96485.33289; /*(C/mol) */
    real R = 8.3144621 ; /* (J/mol*K) */
    real T = 305; /* (K) */
    real epsilon = 6.9*0.0000000001; /* (C/V*m) */
    real Ex = 40000; /* (V/m) */
    real c_0 = 7.5*0.001; /* (mol/m3) loin du mur */

    real x[ND_ND];
    real y;

    Thread *t;

    cell_t c;
    face_t f;

    DEFINE_SOURCE(axial_mom_source, c, t, dS, eqn)

    float S_x;
    dS[eqn] = 0;
    S_x = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))*Ex;
    return S_x;

    DEFINE_SOURCE(psi_source, c, t, dS, eqn)

    float S_psi;
    dS[eqn] = -2*pow(z,2)*pow(F,2)*c_0*cosh(z*F*C_UDSI(c,t,0)/(R*T))/(epsilon*R*T);
    S_psi = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))/epsilon;
    return S_psi;


    Chen, C. H., & Santiago, J. G. (2002). A planar electroosmotic micropump. Microelectromechanical Systems, Journal of microelectromechanical systems.

    Ren, Y., & Stein, D. (2008). Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology.

    Berrouche, Y. (2008). Etude théorique et expérimentale de pompes électro-osmotiques et de leur utilisation dans une boucle de refroidissement de l’électronique de puissance (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).

    Shamloo, A., Merdasi, A., & Vatankhah, P. (2016). Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications.

    Kim, M. M. (2006). Computational Studies of Protein and Particle Transport in Membrane System (Doctoral dissertation, The Pennsylvania State University).

    Young, J. M. (2005). Microparticle Influenced Electroosmotic Flow.

    Xu, Z., Miao, J., Wang, N., Wen, W., & Sheng, P. (2011). Maximum efficiency of the electro-osmotic pump. Physical Review.

    Devasenathipathy, S., & Santiago, J. G. (2005). Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (pp. 113-154). Springer Berlin Heidelberg.

    Tenny, J. S. (2004). Numerical Simulations in Electro-osmotic Flow.

    Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics.

    Joseph, P. (2005). Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).

    Brask, A. (2005). Electroosmotic micropumps. PhD ThesisTechnical University of Denmark, Denmark.

    Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. Journal of Colloid and Interface Science, 268(1), 133-142.

    Patel, V., & Kassegne, S. K. (2007). Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors and Actuators B: Chemical, 122(1), 42-52.

    Pieritz, R. A. (1998). Modélisation et simulation de milieux poreux par réseaux topologiques (Doctoral dissertation, Université Joseph Fourier–Grenoble).

    Kang, Y., Yang, C., & Huang, X. (2002). Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40(20), 2203-2221.

    Balli, M., Mahmed, C., Duc, D., Nikkola, P., Sari, O., Hadorn, J. C., & Rahali, F. (2012). Le renouveau de la réfrigération magnétique. Revue Générale du Froid, 102(1121), 45-54

    Drake, D. G., & Abu-Sitta, A. M. (1966). Magnetohydrodynamic flow in a rectangular channel at high Hartmann number. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4), 519-528.

    Müller, U., & Bühler, L. (2002). Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities. In Magnetohydrodynamics (pp. 1-67). Springer Vienna.

    Send your message to us:

    • * CAPTCHA: Please select the Key

    Related Products

    • * CAPTCHA: Please select the Key

    WhatsApp Online Chat !