Factory For Energy Storage Wax Series to Netherlands Manufacturer

Factory For
 Energy Storage Wax Series to Netherlands Manufacturer

Short Description:

Product Detail

Product Tags

We goal to understand excellent disfigurement from the manufacturing and supply the top support to domestic and abroad clients wholeheartedly for Wax Motor Actuator , Central Heating Temperature Control Valve , Thermal Actuator Force , We warmly welcome all perspective inquiries from home and abroad to cooperate with us, and look forward to your correspondence.
Factory For Energy Storage Wax Series to Netherlands Manufacturer Detail:

The characteristic of Thermostatic Wax consists of its volume expansion amount can reach up to 13 ~ 15 % when it is heated from solid to liquid. We use this characteristic, when it is heated to a solid-liquid transformation, its’ heat energy can translate into mechanical energy. Thermostatic Wax has been widely applied to temperature auto regulation of thermal-driving and various thermal-starting devices.

We take the wax’s advantage characteristic which can absorb and release thermal energy in the solid-liquid transformation process to store the transferred energy to achieve making use of the most of rich energy resource. Recently years, the new technique has been researched and developed in many fields all over the world, such as new building material, textile industry, electric power, medical device, aviation and space. Some of projects have already stepped into a practical and commercial stage

To conform to market requirement, we have a very good cooperation with some Chinese famous Universities, Scientific Institutions & enterprises to develop and research in energy storage wax.. Some projects have already stepped into a practical stage

 

Name

Model

Melt Point
(℃)

Mechanical Impurities (%)

Water-Solubility Acid and Alkali

Appearance

Energy Storage Wax

E20

20

Non

Non

White-Yellowy Liquid

Energy Storage Wax

E21

25

Non

Non

White-Yellowy Liquid

Energy Storage Wax

E22

30

Non

Non

White-Yellowy Liquid

Energy Storage Wax

E23

35

Non

Non

White-Yellowy Liquid

Energy Storage Wax

E24

40

Non

Non

White-Yellowy Solid

Energy Storage Wax

E25

45

Non

Non

White-Yellowy Solid

Energy Storage Wax

E26

50

Non

Non

White-Yellowy Solid

Energy Storage Wax

E27

80

Non

Non

White


Product detail pictures:

Factory For
 Energy Storage Wax Series to Netherlands Manufacturer detail pictures


It is a great way to further improve our products and repair. Our mission is always to create innovative products to prospects with a superior expertise for Factory For Energy Storage Wax Series to Netherlands Manufacturer, The product will supply to all over the world, such as: Zimbabwe , Slovakia , Finland , We hope we can establish long-term cooperation with all of the customers. And hope we can improve competitiveness and achieve the win-win situation together with the customers. We sincerely welcome the customers from all over the world to contact us for anything you need!



  • Vidéo 1/4 sur la simulation numérique d’un écoulement électroosmotique en milieu poreux.

    J’espère que ça vous aidera, et désolé pour la qualité de la vidéo et des explications, j’ai dû faire vite. Bon visionnage et bon courage pour votre travail !

    Liens des tutoriaux pour Blender:

    Code pour l’UDF dans Fluent:

    #include “udf.h”
    #include “models.h”

    enum

    PSI
    ;

    real z = 1;
    real F = 96485.33289; /*(C/mol) */
    real R = 8.3144621 ; /* (J/mol*K) */
    real T = 305; /* (K) */
    real epsilon = 6.9*0.0000000001; /* (C/V*m) */
    real Ex = 40000; /* (V/m) */
    real c_0 = 7.5*0.001; /* (mol/m3) loin du mur */

    real x[ND_ND];
    real y;

    Thread *t;

    cell_t c;
    face_t f;

    DEFINE_SOURCE(axial_mom_source, c, t, dS, eqn)

    float S_x;
    dS[eqn] = 0;
    S_x = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))*Ex;
    return S_x;

    DEFINE_SOURCE(psi_source, c, t, dS, eqn)

    float S_psi;
    dS[eqn] = -2*pow(z,2)*pow(F,2)*c_0*cosh(z*F*C_UDSI(c,t,0)/(R*T))/(epsilon*R*T);
    S_psi = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))/epsilon;
    return S_psi;

    Sources:

    Chen, C. H., & Santiago, J. G. (2002). A planar electroosmotic micropump. Microelectromechanical Systems, Journal of microelectromechanical systems.

    Ren, Y., & Stein, D. (2008). Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology.

    Berrouche, Y. (2008). Etude théorique et expérimentale de pompes électro-osmotiques et de leur utilisation dans une boucle de refroidissement de l’électronique de puissance (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).

    Shamloo, A., Merdasi, A., & Vatankhah, P. (2016). Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications.

    Kim, M. M. (2006). Computational Studies of Protein and Particle Transport in Membrane System (Doctoral dissertation, The Pennsylvania State University).

    Young, J. M. (2005). Microparticle Influenced Electroosmotic Flow.

    Xu, Z., Miao, J., Wang, N., Wen, W., & Sheng, P. (2011). Maximum efficiency of the electro-osmotic pump. Physical Review.

    Devasenathipathy, S., & Santiago, J. G. (2005). Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (pp. 113-154). Springer Berlin Heidelberg.

    Tenny, J. S. (2004). Numerical Simulations in Electro-osmotic Flow.

    Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics.

    Joseph, P. (2005). Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).

    Brask, A. (2005). Electroosmotic micropumps. PhD ThesisTechnical University of Denmark, Denmark.

    Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. Journal of Colloid and Interface Science, 268(1), 133-142.

    Patel, V., & Kassegne, S. K. (2007). Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors and Actuators B: Chemical, 122(1), 42-52.

    Pieritz, R. A. (1998). Modélisation et simulation de milieux poreux par réseaux topologiques (Doctoral dissertation, Université Joseph Fourier–Grenoble).

    Kang, Y., Yang, C., & Huang, X. (2002). Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40(20), 2203-2221.

    Balli, M., Mahmed, C., Duc, D., Nikkola, P., Sari, O., Hadorn, J. C., & Rahali, F. (2012). Le renouveau de la réfrigération magnétique. Revue Générale du Froid, 102(1121), 45-54

    Drake, D. G., & Abu-Sitta, A. M. (1966). Magnetohydrodynamic flow in a rectangular channel at high Hartmann number. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4), 519-528.

    Müller, U., & Bühler, L. (2002). Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities. In Magnetohydrodynamics (pp. 1-67). Springer Vienna.



    I installed the lock actuator and ended up breaking the plastic support bracket because I was not aware of how to take it off. I ended up installing it without it and no issues were present. In video you can see how you can take this off without breaking it but it is very difficult to see from the inside.

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the Flag

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the House

    WhatsApp Online Chat !