Fast delivery for TU-032 thermostatic cartridge wax sensor for sanitary ware to Tajikistan Manufacturer
Short Description:
Product Detail
Product Tags
Fast delivery for TU-032 thermostatic cartridge wax sensor for sanitary ware to Tajikistan Manufacturer Detail:
1. Operation Principle
The Thermostatic Wax that has been sealed in shell body induces expansion by a given temperature, and inner rubber seal part drives its handspike to move under expansion pressure to realize a transition from thermal energy into mechanical energy. The Thermostatic Wax brings an upward movement to its handspike, and automatic control of various function are realized by use of upward movement of handspike. The return of handspike is accomplished by negative load in a given returned temperature.
2. Characteristic
(1)Small body size, occupied limited space, and its size and structure may be designed in according to the location where needs to work.
(2)Temperature control is reliable and nicety
(3)No shaking and tranquilization in working condition.
(4)The element doesn’t need special maintenance.
(5)Working life is long.
3.Main Technical Parameters
(1)Handspike’s height may be confirmed by drawing and technical parameters
(2)Handspike movement is relatives to the temperature range of the element, and the effective distance range is from 1.5mm to 20 mm.
(3)Temperature control range of thermal wax actuator is between –20 ~ 230℃.
(4)Lag phenomenon is generally 1 ~ 2℃. Friction of each component part and lag of the component part temperature cause a lag phenomenon. Because there is a difference between up and down curve of traveling distance.
(5)Loading force of thermal wax actuator is difference, it depends on its’ shell size.
Product detail pictures:

We usually continually offer you the most conscientious consumer services, along with the widest variety of designs and styles with finest materials. These initiatives include the availability of customized designs with speed and dispatch for Fast delivery for TU-032 thermostatic cartridge wax sensor for sanitary ware to Tajikistan Manufacturer, The product will supply to all over the world, such as: Rio de Janeiro , Jeddah , Afghanistan , Selling our products causes no risks and brings high returns to your company instead. It is our consistent pursuit to create value for clients. Our company is looking for agents sincerely. What are you waiting for? Come and join us. Now or never.
How to make your Headlights Shiny like New. Demonstrated on Mercedes w203 c180 c230 c200 c240 c270 c320
► Our Website: https://mechaniclifestyle.com
We took this video to show you how to restore your headlight and make them like brand new again. We demonstrated it on a 2005 Mercedes C320 w203. This method will work on all vehicles with the plastic headlights. It will clear the yellowish film and make them like new again! It will improve your visibility at night as well!
► 2ND Channel Subscribe: https://bit.ly/2a86p9Z
►►Honest Product Review Channel: https://bit.ly/2ygqUcy
► BMW E46 ZHP PROJECT https://bit.ly/2g8tOa9
► Ford Fiesta ST BUILD https://bit.ly/2a59UKp
► 2013 GT86 Project Playlist: https://bit.ly/2dz4xY1
Please LIKE and SUBSCRIBE for more DIY Videos!
5 NEW VIDEOS Every Week!
Thank you
*Disclaimer
We, World Mechanics, are not responsible for property damage or injury incurred as a result of any of the information contained in this video. Information given in this video does not guarantee the desired outcome. Any injury, damage or loss that may result from improper use of the tools, equipment, or the information contained in this video is the sole responsibility of the user and not World Mechanics.
Vidéo 4/4 sur la simulation numérique d’un écoulement électroosmotique en milieu poreux.
J’espère que ça vous aidera, et désolé pour la qualité de la vidéo et des explications, j’ai dû faire vite. Bon visionnage et bon courage pour votre travail !
Liens des tutoriaux pour Blender:
Code pour l’UDF dans Fluent:
#include “udf.h”
#include “models.h”
enum
PSI
;
real z = 1;
real F = 96485.33289; /*(C/mol) */
real R = 8.3144621 ; /* (J/mol*K) */
real T = 305; /* (K) */
real epsilon = 6.9*0.0000000001; /* (C/V*m) */
real Ex = 40000; /* (V/m) */
real c_0 = 7.5*0.001; /* (mol/m3) loin du mur */
real x[ND_ND];
real y;
Thread *t;
cell_t c;
face_t f;
DEFINE_SOURCE(axial_mom_source, c, t, dS, eqn)
float S_x;
dS[eqn] = 0;
S_x = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))*Ex;
return S_x;
DEFINE_SOURCE(psi_source, c, t, dS, eqn)
float S_psi;
dS[eqn] = -2*pow(z,2)*pow(F,2)*c_0*cosh(z*F*C_UDSI(c,t,0)/(R*T))/(epsilon*R*T);
S_psi = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))/epsilon;
return S_psi;
Sources:
Chen, C. H., & Santiago, J. G. (2002). A planar electroosmotic micropump. Microelectromechanical Systems, Journal of microelectromechanical systems.
Ren, Y., & Stein, D. (2008). Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology.
Berrouche, Y. (2008). Etude théorique et expérimentale de pompes électro-osmotiques et de leur utilisation dans une boucle de refroidissement de l’électronique de puissance (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).
Shamloo, A., Merdasi, A., & Vatankhah, P. (2016). Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications.
Kim, M. M. (2006). Computational Studies of Protein and Particle Transport in Membrane System (Doctoral dissertation, The Pennsylvania State University).
Young, J. M. (2005). Microparticle Influenced Electroosmotic Flow.
Xu, Z., Miao, J., Wang, N., Wen, W., & Sheng, P. (2011). Maximum efficiency of the electro-osmotic pump. Physical Review.
Devasenathipathy, S., & Santiago, J. G. (2005). Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (pp. 113-154). Springer Berlin Heidelberg.
Tenny, J. S. (2004). Numerical Simulations in Electro-osmotic Flow.
Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics.
Joseph, P. (2005). Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).
Brask, A. (2005). Electroosmotic micropumps. PhD ThesisTechnical University of Denmark, Denmark.
Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. Journal of Colloid and Interface Science, 268(1), 133-142.
Patel, V., & Kassegne, S. K. (2007). Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors and Actuators B: Chemical, 122(1), 42-52.
Pieritz, R. A. (1998). Modélisation et simulation de milieux poreux par réseaux topologiques (Doctoral dissertation, Université Joseph Fourier–Grenoble).
Kang, Y., Yang, C., & Huang, X. (2002). Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40(20), 2203-2221.
Balli, M., Mahmed, C., Duc, D., Nikkola, P., Sari, O., Hadorn, J. C., & Rahali, F. (2012). Le renouveau de la réfrigération magnétique. Revue Générale du Froid, 102(1121), 45-54
Drake, D. G., & Abu-Sitta, A. M. (1966). Magnetohydrodynamic flow in a rectangular channel at high Hartmann number. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4), 519-528.
Müller, U., & Bühler, L. (2002). Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities. In Magnetohydrodynamics (pp. 1-67). Springer Vienna.