18 Years Factory offer TU-1F07 thermal wax actuator for thermostatic automatic water drain valve for Italy Factory

18 Years Factory offer
 TU-1F07 thermal wax actuator for thermostatic automatic water drain valve for Italy Factory

Short Description:

Product Detail

Product Tags

We take pleasure in an exceptionally excellent status between our buyers for our superb merchandise good quality, aggressive price tag and the greatest support for Thermostatic Cartridges , Electric Cylinder Actuator , Thermal Actuator Force , With the tenet of "faith-based, customer first", we welcome clients to call or e-mail us for cooperation.
18 Years Factory offer TU-1F07 thermal wax actuator for thermostatic automatic water drain valve for Italy Factory Detail:

1. Operation Principle

The Thermostatic Wax that has been sealed in shell body induces expansion by a given temperature, and inner rubber seal part drives its handspike to move under expansion pressure to realize a transition from thermal energy into mechanical energy. The Thermostatic Wax brings an upward movement to its handspike, and automatic control of various function are realized by use of upward movement of handspike. The return of handspike is accomplished by negative load in a given returned temperature.

2. Characteristic

(1)Small body size, occupied limited space, and its size and structure may be designed in according to the location where needs to work.

(2)Temperature control is reliable and nicety

(3)No shaking and tranquilization in working condition.

(4)The element doesn’t need special maintenance.

(5)Working life is long.

3.Main Technical Parameters

(1)Handspike’s height may be confirmed by drawing and technical parameters

(2)Handspike movement is relatives to the temperature range of the element, and the effective distance range is from 1.5mm to 20 mm.

(3)Temperature control range of thermal wax actuator is between –20 ~ 230℃.

(4)Lag phenomenon is generally 1 ~ 2℃. Friction of each component part and lag of the component part temperature cause a lag phenomenon. Because there is a difference between up and down curve of traveling distance.

(5)Loading force of thermal wax actuator is difference, it depends on its’ shell size.

 


Product detail pictures:

18 Years Factory offer
 TU-1F07 thermal wax actuator for thermostatic automatic water drain valve for Italy Factory detail pictures


We can easily usually fulfill our respected customers with our very good top quality, very good price tag and excellent support due to we have been more expert and much more hard-working and do it in cost-effective way for 18 Years Factory offer TU-1F07 thermal wax actuator for thermostatic automatic water drain valve for Italy Factory, The product will supply to all over the world, such as: Japan , Denmark , South Africa , We are sticking to excellent quality, competitive price and punctual delivery and better service, and sincerely hope to establish long-term good relationships and cooperation with our new and old business partners from all over the world. Sincerely welcome you to join us.



  • Oven won’t turn on or not heating? Burners not working or sparking all the time? This video provides information on how a gas range works and offers troubleshooting tips to assist you in diagnosing and repair.

    Here is a list of the most commonly replaced parts associated with each range/stove/oven symptom:

    Oven won’t heat: igniter, bake or broil element, control board, thermostat, safety valve
    Oven doesn’t bake evenly: igniter, bake or broil element, control board, thermostat
    Range surface element won’t work: surface element, element switch or receptacle wires
    Range burner spark problem: spark module, spark ignition switch, spark electrode
    Oven temperature problem: bake or broil element, igniter, control board, thermostat, sensor
    Oven won’t turn on: control board, thermal fuse, igniter, safety valve, pressure regulator
    Range burners spark all the time: spark ignition switch, spark module

    How to disassemble your range & oven:

    https://www.youtube.com/watch?v=qOy4tS9tkCQ?TLSID=1873

    For more DIY videos including part replacement and help finding your model visit the repair help section of our website:

    https://www.repairclinic.com/RepairHelp/Range-Stove-Oven-Repair-Help?TLSID=1873

    Click here to purchase replacement range & oven parts:

    https://www.repairclinic.com/Shop-For-Parts/a13/Range-Stove-Oven-Parts?TLSID=1873

    All of the information provided in this range & oven troubleshooting video is applicable to the following brands: Frigidaire, GE, Jenn Air, Kenmore, KitchenAid, Magic Chef, Maytag, Thermador, Whirlpool

    Connect With Us!

    https://plus.google.com/+repairclinic

    https://www.facebook.com/RepairClinic

    https://www.twitter.com/RepairClinic

    https://pinterest.com/RepairClinic/

    Join our free VIP email list for discounts and money-saving tips: https://tinyurl.com/pnnh3be
    Check out our blog: https://www.DIY.RepairClinic.com

    Don’t forget to like and comment on this video, and subscribe to our channel!



    Vidéo 4/4 sur la simulation numérique d’un écoulement électroosmotique en milieu poreux.

    J’espère que ça vous aidera, et désolé pour la qualité de la vidéo et des explications, j’ai dû faire vite. Bon visionnage et bon courage pour votre travail !

    Liens des tutoriaux pour Blender:

    Code pour l’UDF dans Fluent:

    #include “udf.h”
    #include “models.h”

    enum

    PSI
    ;

    real z = 1;
    real F = 96485.33289; /*(C/mol) */
    real R = 8.3144621 ; /* (J/mol*K) */
    real T = 305; /* (K) */
    real epsilon = 6.9*0.0000000001; /* (C/V*m) */
    real Ex = 40000; /* (V/m) */
    real c_0 = 7.5*0.001; /* (mol/m3) loin du mur */

    real x[ND_ND];
    real y;

    Thread *t;

    cell_t c;
    face_t f;

    DEFINE_SOURCE(axial_mom_source, c, t, dS, eqn)

    float S_x;
    dS[eqn] = 0;
    S_x = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))*Ex;
    return S_x;

    DEFINE_SOURCE(psi_source, c, t, dS, eqn)

    float S_psi;
    dS[eqn] = -2*pow(z,2)*pow(F,2)*c_0*cosh(z*F*C_UDSI(c,t,0)/(R*T))/(epsilon*R*T);
    S_psi = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))/epsilon;
    return S_psi;

    Sources:

    Chen, C. H., & Santiago, J. G. (2002). A planar electroosmotic micropump. Microelectromechanical Systems, Journal of microelectromechanical systems.

    Ren, Y., & Stein, D. (2008). Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology.

    Berrouche, Y. (2008). Etude théorique et expérimentale de pompes électro-osmotiques et de leur utilisation dans une boucle de refroidissement de l’électronique de puissance (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).

    Shamloo, A., Merdasi, A., & Vatankhah, P. (2016). Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications.

    Kim, M. M. (2006). Computational Studies of Protein and Particle Transport in Membrane System (Doctoral dissertation, The Pennsylvania State University).

    Young, J. M. (2005). Microparticle Influenced Electroosmotic Flow.

    Xu, Z., Miao, J., Wang, N., Wen, W., & Sheng, P. (2011). Maximum efficiency of the electro-osmotic pump. Physical Review.

    Devasenathipathy, S., & Santiago, J. G. (2005). Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (pp. 113-154). Springer Berlin Heidelberg.

    Tenny, J. S. (2004). Numerical Simulations in Electro-osmotic Flow.

    Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics.

    Joseph, P. (2005). Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).

    Brask, A. (2005). Electroosmotic micropumps. PhD ThesisTechnical University of Denmark, Denmark.

    Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. Journal of Colloid and Interface Science, 268(1), 133-142.

    Patel, V., & Kassegne, S. K. (2007). Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors and Actuators B: Chemical, 122(1), 42-52.

    Pieritz, R. A. (1998). Modélisation et simulation de milieux poreux par réseaux topologiques (Doctoral dissertation, Université Joseph Fourier–Grenoble).

    Kang, Y., Yang, C., & Huang, X. (2002). Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40(20), 2203-2221.

    Balli, M., Mahmed, C., Duc, D., Nikkola, P., Sari, O., Hadorn, J. C., & Rahali, F. (2012). Le renouveau de la réfrigération magnétique. Revue Générale du Froid, 102(1121), 45-54

    Drake, D. G., & Abu-Sitta, A. M. (1966). Magnetohydrodynamic flow in a rectangular channel at high Hartmann number. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4), 519-528.

    Müller, U., & Bühler, L. (2002). Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities. In Magnetohydrodynamics (pp. 1-67). Springer Vienna.

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the Car

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the Heart

    WhatsApp Online Chat !