Hot Sale for TU-1F03 thermal wax actuator for industrial adjustable temperature switch control Export to Casablanca
Short Description:
Product Detail
Product Tags
Hot Sale for TU-1F03 thermal wax actuator for industrial adjustable temperature switch control Export to Casablanca Detail:
1. Operation Principle
The Thermostatic Wax that has been sealed in shell body induces expansion by a given temperature, and inner rubber seal part drives its handspike to move under expansion pressure to realize a transition from thermal energy into mechanical energy. The Thermostatic Wax brings an upward movement to its handspike, and automatic control of various function are realized by use of upward movement of handspike. The return of handspike is accomplished by negative load in a given returned temperature.
2. Characteristic
(1)Small body size, occupied limited space, and its size and structure may be designed in according to the location where needs to work.
(2)Temperature control is reliable and nicety
(3)No shaking and tranquilization in working condition.
(4)The element doesn’t need special maintenance.
(5)Working life is long.
3.Main Technical Parameters
(1)Handspike’s height may be confirmed by drawing and technical parameters
(2)Handspike movement is relatives to the temperature range of the element, and the effective distance range is from 1.5mm to 20 mm.
(3)Temperature control range of thermal wax actuator is between –20 ~ 230℃.
(4)Lag phenomenon is generally 1 ~ 2℃. Friction of each component part and lag of the component part temperature cause a lag phenomenon. Because there is a difference between up and down curve of traveling distance.
(5)Loading force of thermal wax actuator is difference, it depends on its’ shell size.
Product detail pictures:

We've got a specialist, effectiveness staff to supply high quality service for our shopper. We always follow the tenet of customer-oriented, details-focused for Hot Sale for TU-1F03 thermal wax actuator for industrial adjustable temperature switch control Export to Casablanca, The product will supply to all over the world, such as: Colombia , Chicago , Botswana , Insisting on the high quality generation line management and customers expert assistance, we now have designed our resolution to offer our buyers using the to start with amount getting and just after services practical experience. Maintaining the prevailing friendly relations with our buyers, we however innovate our solution lists all of the time to satisfy the brand new demands and adhere to the most up-to-date development of the market in Malta. We are ready to face the worries and make the improve to understand all the possibilities in international trade.
Prototyping the arduino based grill smoker project
Follow us at: https://twitter.com/TutorVista
Check us out at https://www.tutorvista.com/content/physics/physics-iv/electromagnetic-induction/eddy-currents.php
What is Eddy Current
Eddy currents are currents induced in conductors to oppose the change in flux that generated them.[citation needed] It is caused when a conductor is exposed to a changing magnetic field due to relative motion of the field source and conductor; or due to variations of the field with time. This can cause a circulating flow of electrons, or a current, within the body of the conductor. These circulating eddies of current create induced magnetic fields that oppose the change of the original magnetic field due to Lenz’s law, causing repulsive or drag forces between the conductor and the magnet. The stronger the applied magnetic field, or the greater the electrical conductivity of the conductor, or the faster the field that the conductor is exposed to changes, then the greater the currents that are developed and the greater the opposing field.
The term eddy current comes from analogous currents seen in water when dragging an oar breadthwise: localised areas of turbulence known as eddies give rise to persistent vortices.
Eddy currents, like all electric currents, generate heat as well as electromagnetic forces. The heat can be harnessed for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can often be minimised with thin plates, by lamination of conductors or other details of conductor shape.
Please like our facebook page
https://www.facebook.com/tutorvista






