Wholesale PriceList for Low Temperature Wax for Moscow Importers

Wholesale PriceList for
 Low Temperature Wax for Moscow Importers

Short Description:

Product Detail

Product Tags

It really is our obligation to satisfy your requirements and efficiently serve you. Your fulfillment is our greatest reward. We're hunting forward to your check out for joint development for Electric Actuator Applications , Valve Core , Radiator Thermostatic Valves Fit Screw Air Compressor Thermostat Valve Core , We welcome customers, business associations and friends from all parts of the world to contact us and seek cooperation for mutual benefits.
Wholesale PriceList for Low Temperature Wax for Moscow Importers Detail:

Automatic Temperature Regulating Agent Series is a kind of thermal expansion materials, which depends on principles that the substance expands when it is heated and constricts when it is cooled and a liquid is incompressible. It can automatically regulate temperature. When the ambient temperature goes up to the special value, Automatic Temperature Regulating Agent goes up to the special temperature with the ambient temperature, its unit volume increases. When the ambient temperature falls down to special value, Automatic Temperature Regulating Agent also falls down to the special temperature with the ambient temperature, its unit volume reduces. The agent is loaded in the purpose-made thermostatic element. The variation of ambient temperature takes a pressure and the thermostatic element takes a change, and this change brings the movement of either the appurtenance of the thermodynamic component or itself, thereby carrying out the automatic opening & closing function. All sorts of temperature controllers and the electrical switches are developed depending on the physical feature of Automatic Temperature Regulating Agent. It has been widely used in the fields of refrigeration, auto-control system, automobile industry, petrochemical industry, sanitary ware, heating and ventilating, electric electron, building, space & aviation etc.

Model Number

Appearance

(Normal Temperature)

Quality Standard

Range of Temperature Control

Effective Distance

Travel

Water-Solubility

Acid and Alkali

Mechanical Impurity

A30-1

Powder, Cream

30/40

7

Non.

Non.

A30-2

Powder, Cream

30/40

10

Non.

Non.

A30-3

Powder, Cream

3045

10

Non.

Non.

A30-4

Powder, Cream

30/60

8

Non.

Non.

A30-5

Powder, Cream

30/65

4

Non.

Non.

A30-6

Powder, Cream

30/85

10

Non.

Non.

A32

Powder, Cream

32/60

4

Non.

Non.

A33

Powder, Cream

33/45

6

Non.

Non.

A35

Powder, Cream

35/45

5

Non.

Non.

A35-1

Powder, Cream

35/45

10

Non.

Non.

A35-2

Powder, Cream

35/50

8

Non.

Non.

A36

Powder, Slice , Column

36/62

5.5

Non.

Non.

A37

Powder, Slice , Column

37/47

9

Non.

Non.

A38

Powder, Slice , Column

38/50

7

Non.

Non.

A40

Powder, Slice , Column

40/50

7

Non.

Non.

A40-1

Powder, Slice , Column

40/50

10

Non.

Non.

A40-2

Powder, Slice , Column

40/64

4

Non.

Non.

A40-3

Powder, Slice , Column

40/80

8

Non.

Non.

A42

Powder, Slice , Column

42/68

5

Non.

Non.

A43

Powder, Slice , Column

43/48

6

Non.

Non.

A43-1

Powder, Slice , Column

43/55

7

Non.

Non.


Product detail pictures:

Wholesale PriceList for
 Low Temperature Wax for Moscow Importers detail pictures


We usually keep on with the principle "Quality To start with, Prestige Supreme". We've been fully committed to offering our purchasers with competitively priced excellent solutions, prompt delivery and skilled support for Wholesale PriceList for Low Temperature Wax for Moscow Importers, The product will supply to all over the world, such as: Guatemala , Jeddah , Spain , Immediate and specialist after-sale service supplied by our consultant group has happy our buyers. Detailed Info and parameters from the merchandise will probably be sent to you for any thorough acknowledge. Free samples may be delivered and company check out to our corporation. n Morocco for negotiation is constantly welcome. Hope to get inquiries type you and construct a long-term co-operation partnership.



  • Vidéo 4/4 sur la simulation numérique d’un écoulement électroosmotique en milieu poreux.

    J’espère que ça vous aidera, et désolé pour la qualité de la vidéo et des explications, j’ai dû faire vite. Bon visionnage et bon courage pour votre travail !

    Liens des tutoriaux pour Blender:

    Code pour l’UDF dans Fluent:

    #include “udf.h”
    #include “models.h”

    enum

    PSI
    ;

    real z = 1;
    real F = 96485.33289; /*(C/mol) */
    real R = 8.3144621 ; /* (J/mol*K) */
    real T = 305; /* (K) */
    real epsilon = 6.9*0.0000000001; /* (C/V*m) */
    real Ex = 40000; /* (V/m) */
    real c_0 = 7.5*0.001; /* (mol/m3) loin du mur */

    real x[ND_ND];
    real y;

    Thread *t;

    cell_t c;
    face_t f;

    DEFINE_SOURCE(axial_mom_source, c, t, dS, eqn)

    float S_x;
    dS[eqn] = 0;
    S_x = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))*Ex;
    return S_x;

    DEFINE_SOURCE(psi_source, c, t, dS, eqn)

    float S_psi;
    dS[eqn] = -2*pow(z,2)*pow(F,2)*c_0*cosh(z*F*C_UDSI(c,t,0)/(R*T))/(epsilon*R*T);
    S_psi = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))/epsilon;
    return S_psi;

    Sources:

    Chen, C. H., & Santiago, J. G. (2002). A planar electroosmotic micropump. Microelectromechanical Systems, Journal of microelectromechanical systems.

    Ren, Y., & Stein, D. (2008). Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology.

    Berrouche, Y. (2008). Etude théorique et expérimentale de pompes électro-osmotiques et de leur utilisation dans une boucle de refroidissement de l’électronique de puissance (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).

    Shamloo, A., Merdasi, A., & Vatankhah, P. (2016). Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications.

    Kim, M. M. (2006). Computational Studies of Protein and Particle Transport in Membrane System (Doctoral dissertation, The Pennsylvania State University).

    Young, J. M. (2005). Microparticle Influenced Electroosmotic Flow.

    Xu, Z., Miao, J., Wang, N., Wen, W., & Sheng, P. (2011). Maximum efficiency of the electro-osmotic pump. Physical Review.

    Devasenathipathy, S., & Santiago, J. G. (2005). Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (pp. 113-154). Springer Berlin Heidelberg.

    Tenny, J. S. (2004). Numerical Simulations in Electro-osmotic Flow.

    Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics.

    Joseph, P. (2005). Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).

    Brask, A. (2005). Electroosmotic micropumps. PhD ThesisTechnical University of Denmark, Denmark.

    Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. Journal of Colloid and Interface Science, 268(1), 133-142.

    Patel, V., & Kassegne, S. K. (2007). Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors and Actuators B: Chemical, 122(1), 42-52.

    Pieritz, R. A. (1998). Modélisation et simulation de milieux poreux par réseaux topologiques (Doctoral dissertation, Université Joseph Fourier–Grenoble).

    Kang, Y., Yang, C., & Huang, X. (2002). Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40(20), 2203-2221.

    Balli, M., Mahmed, C., Duc, D., Nikkola, P., Sari, O., Hadorn, J. C., & Rahali, F. (2012). Le renouveau de la réfrigération magnétique. Revue Générale du Froid, 102(1121), 45-54

    Drake, D. G., & Abu-Sitta, A. M. (1966). Magnetohydrodynamic flow in a rectangular channel at high Hartmann number. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4), 519-528.

    Müller, U., & Bühler, L. (2002). Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities. In Magnetohydrodynamics (pp. 1-67). Springer Vienna.



    An animation of the hydraulic rotary actuator shown in the video posted by AvE. This is not a hydraulic motor as the output shaft only rotates 360 degrees in total, but the output torque is substantially higher.

    Original video: https://www.youtube.com/watch?v=yZ04iC3J6Mc

    The outer housing (yellow) is fixed. Hydraulic pressure drives the piston (green) up and down along the axis of the housing. The output shaft (red) is free to rotate but constrained axially.

    The piston is engaged with the housing via a left-handed thread. This causes the piston to rotate at it travels up and down.

    The piston is also engaged to the output shaft via a right-handed thread. As the piston moves down, the output shaft is forced to rotate. The rotation of the piston and output shaft are in the same direction, causing the total output rotation to be the sum of:

    (piston displacement * piston-housing thread lead) + (piston displacement * piston-shaft lead)

    In this model, the piston-housing and piston-shaft leads are the same, though this is not a physical requirement. The result is the rotation of the shaft is double the rotation of the piston. Different leads on the engaging threads can result in more or less output rotation at the expense of torque and internal friction.

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the Tree

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the Key

    WhatsApp Online Chat !