10 Years Manufacturer Thermostatic Wax Linearity Series for Brunei Importers

10 Years Manufacturer
 Thermostatic Wax Linearity Series for Brunei Importers

Short Description:

Product Detail

Product Tags

We rely upon strategic thinking, constant modernisation in all segments, technological advances and of course upon our employees that directly participate inside our success for Thermal Powered Actuator , Where Can I Get Paraffin Wax , Water Temperature Control For Thermostatic Valve , We focus on to make excellent quality products to supply service for our clients to establish long-term win-win relationship.
10 Years Manufacturer Thermostatic Wax Linearity Series for Brunei Importers Detail:

The characteristic of Thermostatic Wax consists of its volume expansion amount can reach up to 13 ~ 15 % when it is heated from solid to liquid. We use this characteristic, when it is heated to a solid-liquid transformation, its’ heat energy can translate into mechanical energy. Thermostatic Wax has been widely applied to temperature auto regulation of thermal-driving and various thermal-starting devices.

For example, automobile thermostat has been most widely well known, it has cylindrical seal part that loads some Thermostatic Waxes inside. To realize automatic temperature control, it was designed by a special technical specification for the solid-liquid transformation of Thermostatic Wax. When the cylindrical part is heated, Thermostatic Wax in the part is also heated and making a solid-liquid transformation expansion, Thermostatic Wax pushes thermostat’s itself handspike to open the valve. When the cylindrical part gets cold, Thermostatic Wax also cooled and start to shrink, Thermostatic Wax pushes itself handspike back to original situation under the return load force to close up the valve to realize automatic temperature control.

Depending on the main principle of Thermostatic Wax, The developed thermal driving devices and thermostats have been widely applied to automobile thermostat, automobile temperature-control switch for electric fan, various engines cooling water temperature auto controller, lubricant oil temperature auto control, auto cycle enriching valve, industry electric power control valve, water temperature regulating valve, safety device, space heating, fire protection, air filtering, temperature regulating device, sanitary ware and heating temperature controlling valve, air temperature control, ventilating control, solar water heater, automatic door and window, thermal driving electric switch, alarm apparatus, house ventilating, radiator temperature control valve, hot landing device for aviation and automaton etc.

Within temperature control range of –20 ~ 180 ℃ of Thermostatic Wax may compound with different temperature range and different efficient distance according to client’s technical demand. Our company may offer the relative technical service.

 

 

Model Number

Appearance

(Normal Temperature)

Quality Standard

Range of Temperature

Control

Effective Distance

Travel

Water-Solubility

sAcid and Alkali

Mechanical Impurity

B-5-1

Liquid

-20/-5

≥7

Non.

Non.

B0-1

Liquid

-15/0

≥7

Non.

Non.

B5-1

Liquid

-10/5

≥7

Non.

Non.

B15-1

Liquid

0/15

≥7

Non.

Non.

B20-1

Semisolid

5/20

≥7

Non.

Non.

B25-1

Semisolid

10/25

≥7

Non.

Non.

B30-1

Semisolid

15/30

≥7

Non.

Non.

B35-1

Semisolid

20/35

≥7

Non.

Non.

B40-1

Powder, Slice , Column

25/40

≥7

Non.

Non.

B45-1

Powder, Slice , Column

30/45

≥7

Non.

Non.

B50-1

Powder, Slice , Column

35/50

≥7

Non.

Non.

B55-1

Powder, Slice , Column

40/55

≥7

Non.

Non.

B60-1

Powder, Slice , Column

45/60

≥7

Non.

Non.

B65-1

Powder, Slice , Column

50/65

≥7

Non.

Non.

B70-1

Powder, Slice , Column

55/70

≥7

Non.

Non.

B75-1

Powder, Slice , Column

60/75

≥7

Non.

Non.

B80-1

Powder, Slice , Column

65/80

≥7

Non.

Non.

B85-1

Powder, Slice , Column

70/85

≥7

Non.

Non.

B90-1

Powder, Slice , Column

75/90

≥7

Non.

Non.

B95-1

Powder, Slice , Column

80/95

≥7

Non.

Non.

 

 

 


Product detail pictures:

10 Years Manufacturer
 Thermostatic Wax Linearity Series for Brunei Importers detail pictures


Our company aims to operating faithfully, serving to all of our customers , and working in new technology and new machine constantly for 10 Years Manufacturer Thermostatic Wax Linearity Series for Brunei Importers, The product will supply to all over the world, such as: Macedonia , Luxembourg , Atlanta , Our main objectives are to provide our customers worldwide with good quality, competitive price, satisfied delivery and excellent services. Customer satisfaction is our main goal. We welcome you to visit our showroom and office. We are looking forward to establish business relation with you.



  • an mp3 transfer from a you tube video playing on my ipad.

    the new motor mount is working well. the cylinder lathe is making bright, crisp, LOUD, recordings that can rival a tape recorder. this is recorded at 120 rpm on a modified black wax dictation cylinder.

    the CANAPHONIC TRANSFER PROCESS works and works well. its simple and efficient…

    THEVICTROLAGUY@GMAIL.COM



    Vidéo 4/4 sur la simulation numérique d’un écoulement électroosmotique en milieu poreux.

    J’espère que ça vous aidera, et désolé pour la qualité de la vidéo et des explications, j’ai dû faire vite. Bon visionnage et bon courage pour votre travail !

    Liens des tutoriaux pour Blender:

    Code pour l’UDF dans Fluent:

    #include “udf.h”
    #include “models.h”

    enum

    PSI
    ;

    real z = 1;
    real F = 96485.33289; /*(C/mol) */
    real R = 8.3144621 ; /* (J/mol*K) */
    real T = 305; /* (K) */
    real epsilon = 6.9*0.0000000001; /* (C/V*m) */
    real Ex = 40000; /* (V/m) */
    real c_0 = 7.5*0.001; /* (mol/m3) loin du mur */

    real x[ND_ND];
    real y;

    Thread *t;

    cell_t c;
    face_t f;

    DEFINE_SOURCE(axial_mom_source, c, t, dS, eqn)

    float S_x;
    dS[eqn] = 0;
    S_x = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))*Ex;
    return S_x;

    DEFINE_SOURCE(psi_source, c, t, dS, eqn)

    float S_psi;
    dS[eqn] = -2*pow(z,2)*pow(F,2)*c_0*cosh(z*F*C_UDSI(c,t,0)/(R*T))/(epsilon*R*T);
    S_psi = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))/epsilon;
    return S_psi;

    Sources:

    Chen, C. H., & Santiago, J. G. (2002). A planar electroosmotic micropump. Microelectromechanical Systems, Journal of microelectromechanical systems.

    Ren, Y., & Stein, D. (2008). Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology.

    Berrouche, Y. (2008). Etude théorique et expérimentale de pompes électro-osmotiques et de leur utilisation dans une boucle de refroidissement de l’électronique de puissance (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).

    Shamloo, A., Merdasi, A., & Vatankhah, P. (2016). Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications.

    Kim, M. M. (2006). Computational Studies of Protein and Particle Transport in Membrane System (Doctoral dissertation, The Pennsylvania State University).

    Young, J. M. (2005). Microparticle Influenced Electroosmotic Flow.

    Xu, Z., Miao, J., Wang, N., Wen, W., & Sheng, P. (2011). Maximum efficiency of the electro-osmotic pump. Physical Review.

    Devasenathipathy, S., & Santiago, J. G. (2005). Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (pp. 113-154). Springer Berlin Heidelberg.

    Tenny, J. S. (2004). Numerical Simulations in Electro-osmotic Flow.

    Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics.

    Joseph, P. (2005). Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).

    Brask, A. (2005). Electroosmotic micropumps. PhD ThesisTechnical University of Denmark, Denmark.

    Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. Journal of Colloid and Interface Science, 268(1), 133-142.

    Patel, V., & Kassegne, S. K. (2007). Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors and Actuators B: Chemical, 122(1), 42-52.

    Pieritz, R. A. (1998). Modélisation et simulation de milieux poreux par réseaux topologiques (Doctoral dissertation, Université Joseph Fourier–Grenoble).

    Kang, Y., Yang, C., & Huang, X. (2002). Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40(20), 2203-2221.

    Balli, M., Mahmed, C., Duc, D., Nikkola, P., Sari, O., Hadorn, J. C., & Rahali, F. (2012). Le renouveau de la réfrigération magnétique. Revue Générale du Froid, 102(1121), 45-54

    Drake, D. G., & Abu-Sitta, A. M. (1966). Magnetohydrodynamic flow in a rectangular channel at high Hartmann number. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4), 519-528.

    Müller, U., & Bühler, L. (2002). Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities. In Magnetohydrodynamics (pp. 1-67). Springer Vienna.

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the House

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the Truck

    WhatsApp Online Chat !