Professional High Quality TU-1H02 thermal wax actuator for thermostatic radiator valve for Netherlands Factory

Professional High Quality
 TU-1H02 thermal wax actuator for thermostatic radiator valve for Netherlands Factory

Short Description:

Product Detail

Product Tags

We now have a skilled, performance team to supply good quality services for our consumer. We often follow the tenet of customer-oriented, details-focused for Thermal Actuator Conversion , Radiator Valve Function , Thermostatic Shower Mixer Valve , We are confident to make great achievements in the future. We are looking forward to becoming one of your most reliable suppliers.
Professional High Quality TU-1H02 thermal wax actuator for thermostatic radiator valve for Netherlands Factory Detail:

1. Operation Principle

The Thermostatic Wax that has been sealed in shell body induces expansion by a given temperature, and inner rubber seal part drives its handspike to move under expansion pressure to realize a transition from thermal energy into mechanical energy. The Thermostatic Wax brings an upward movement to its handspike, and automatic control of various function are realized by use of upward movement of handspike. The return of handspike is accomplished by negative load in a given returned temperature.

2. Characteristic

(1)Small body size, occupied limited space, and its size and structure may be designed in according to the location where needs to work.

(2)Temperature control is reliable and nicety

(3)No shaking and tranquilization in working condition.

(4)The element doesn’t need special maintenance.

(5)Working life is long.

3.Main Technical Parameters

(1)Handspike’s height may be confirmed by drawing and technical parameters

(2)Handspike movement is relatives to the temperature range of the element, and the effective distance range is from 1.5mm to 20 mm.

(3)Temperature control range of thermal wax actuator is between –20 ~ 230℃.

(4)Lag phenomenon is generally 1 ~ 2℃. Friction of each component part and lag of the component part temperature cause a lag phenomenon. Because there is a difference between up and down curve of traveling distance.

(5)Loading force of thermal wax actuator is difference, it depends on its’ shell size.

 


Product detail pictures:

Professional High Quality
 TU-1H02 thermal wax actuator for thermostatic radiator valve for Netherlands Factory detail pictures


Our solutions are widely recognized and trusted by consumers and will meet up with constantly developing financial and social requires for Professional High Quality TU-1H02 thermal wax actuator for thermostatic radiator valve for Netherlands Factory, The product will supply to all over the world, such as: Saudi Arabia , Bolivia , Azerbaijan , Our staffs are rich in experience and trained strictly, with professional knowledge, with energy and always respect their customers as the No. 1, and promise to do their best to provide the effective and individual service for customers. The Company pays attention to maintaining and developing the long-term cooperation relationship with the customers. We promise, as your ideal partner, we will develop a bright future and enjoy the satisfying fruit together with you, with persisting zeal, endless energy and forward spirit.



  • In this educational video we learn how to identify a low profile actuator valve. The virtually invisible Gamma 3TM cleaning heads are built-in flush throughout the …



    Vidéo 1/4 sur la simulation numérique d’un écoulement électroosmotique en milieu poreux.

    J’espère que ça vous aidera, et désolé pour la qualité de la vidéo et des explications, j’ai dû faire vite. Bon visionnage et bon courage pour votre travail !

    Liens des tutoriaux pour Blender:

    Code pour l’UDF dans Fluent:

    #include “udf.h”
    #include “models.h”

    enum

    PSI
    ;

    real z = 1;
    real F = 96485.33289; /*(C/mol) */
    real R = 8.3144621 ; /* (J/mol*K) */
    real T = 305; /* (K) */
    real epsilon = 6.9*0.0000000001; /* (C/V*m) */
    real Ex = 40000; /* (V/m) */
    real c_0 = 7.5*0.001; /* (mol/m3) loin du mur */

    real x[ND_ND];
    real y;

    Thread *t;

    cell_t c;
    face_t f;

    DEFINE_SOURCE(axial_mom_source, c, t, dS, eqn)

    float S_x;
    dS[eqn] = 0;
    S_x = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))*Ex;
    return S_x;

    DEFINE_SOURCE(psi_source, c, t, dS, eqn)

    float S_psi;
    dS[eqn] = -2*pow(z,2)*pow(F,2)*c_0*cosh(z*F*C_UDSI(c,t,0)/(R*T))/(epsilon*R*T);
    S_psi = -2*z*F*c_0*sinh(z*F*C_UDSI(c, t, 0)/(R*T))/epsilon;
    return S_psi;

    Sources:

    Chen, C. H., & Santiago, J. G. (2002). A planar electroosmotic micropump. Microelectromechanical Systems, Journal of microelectromechanical systems.

    Ren, Y., & Stein, D. (2008). Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology.

    Berrouche, Y. (2008). Etude théorique et expérimentale de pompes électro-osmotiques et de leur utilisation dans une boucle de refroidissement de l’électronique de puissance (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).

    Shamloo, A., Merdasi, A., & Vatankhah, P. (2016). Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications.

    Kim, M. M. (2006). Computational Studies of Protein and Particle Transport in Membrane System (Doctoral dissertation, The Pennsylvania State University).

    Young, J. M. (2005). Microparticle Influenced Electroosmotic Flow.

    Xu, Z., Miao, J., Wang, N., Wen, W., & Sheng, P. (2011). Maximum efficiency of the electro-osmotic pump. Physical Review.

    Devasenathipathy, S., & Santiago, J. G. (2005). Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (pp. 113-154). Springer Berlin Heidelberg.

    Tenny, J. S. (2004). Numerical Simulations in Electro-osmotic Flow.

    Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and Nanofluidics.

    Joseph, P. (2005). Etude expérimentale du glissement liquide-solide sur surfaces lisses et texturées (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).

    Brask, A. (2005). Electroosmotic micropumps. PhD ThesisTechnical University of Denmark, Denmark.

    Yao, S., & Santiago, J. G. (2003). Porous glass electroosmotic pumps: theory. Journal of Colloid and Interface Science, 268(1), 133-142.

    Patel, V., & Kassegne, S. K. (2007). Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors and Actuators B: Chemical, 122(1), 42-52.

    Pieritz, R. A. (1998). Modélisation et simulation de milieux poreux par réseaux topologiques (Doctoral dissertation, Université Joseph Fourier–Grenoble).

    Kang, Y., Yang, C., & Huang, X. (2002). Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40(20), 2203-2221.

    Balli, M., Mahmed, C., Duc, D., Nikkola, P., Sari, O., Hadorn, J. C., & Rahali, F. (2012). Le renouveau de la réfrigération magnétique. Revue Générale du Froid, 102(1121), 45-54

    Drake, D. G., & Abu-Sitta, A. M. (1966). Magnetohydrodynamic flow in a rectangular channel at high Hartmann number. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4), 519-528.

    Müller, U., & Bühler, L. (2002). Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities. In Magnetohydrodynamics (pp. 1-67). Springer Vienna.

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the Car

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the Car

    WhatsApp Online Chat !